Specialist course on Lipids in Ruminants, September 22nd, Lokeren - BE

Thesis PhD

May 2015 - May 2018

Prediction of milk fat composition from diets: focus on the duodenal flows of fatty acids.

Lucas de Ofeu AGUIAR PRADO

Supervisors : Anne FERLAY Philipe SCHMIDELY Co-supervisors: Pierre NOZIERE

Systali project: renovation of ruminant feed systems

Plan

- 1. Context and objectives of thesis
- 2. Scientific content
- 3. Materials and methods
- 4. Results
- 5. Conclusions and perspectives

- **Evolution of animal science knowledge:**
 - number of data with fine milk profiles of FA
 - Quantitative laws of response with empirical modelling (meta-analysis).
- Advantages and limits of existing models on the secretion of milk fatty acids:
 - Level: animal and mammary gland
 - Prediction of the major milk components and two FA groups (short- and long-chain)
 - -Standard diets?
 - -No prediction of all milk fatty acid

(Whagorn and Baldwin, 1984, Hannigan and Baldwin, 1994, Shorten and al., 2004, Moate and al. 2008)

- Previous studies have also demonstrated the role of digestive and mammary factors on the production and composition of milk fat.
 - 1. At Digestive level:
 - -Ruminal biohydrogenation of PUFA
 - Interaction with other Nutrient flows
- 2. At Mammary gland level:
 - -Interaction between de novo synthesis and uptake of long FA
 - -Saturation and esterification

(Glasser and al., 2008, Schmidely and al., 2008)

Thesis objective: Predict the yield and composition of milk fat from the diet via the absorbed nutrient flows by modelling approach

The duodenal C18:1 isomers studied (fatty acids selected with over 50 observations from database).

Total C18:1
Total cis C18:1
Total trans C18:1

cis-n C18:1 n = 9, 11, 12, 13, 15

trans-n C18:1 n = 4 to 15

Statical analysis

- Model
- GLM → the response of duodenal C18:1-isomers to a variation of factors :
 - ✓ Isomer precursors intake (main covariates)
 - ✓ Dietary and digestive factors (interfering factors)
- Including the experiment effect (fixed effect)
- A reliable within-experiment variation of these factors
- Selected data for the analysis

- AGRum database

Experiments with

duodenal C18:1-

isomers flows

- Literature data
- 2008 Treatments
- Ruminant species

- Excluded data:
- Fish by-products
- Ruminal infusion
- 1 experiment with 1 treatment

- 138 experimentations
- 422 Treatments

Cattle

Nexp = **114**

Ntrt = 348

Sheep

Nexp = **24**

Ntrt = 74

The interfering factors:

Dietary (controlled factors)

- Concentrate:Forage
- Level of intake

Ruminal fermentation (not controlled factors)

The analysis approaches (example: duodenal cis-9 C18:1 flow)

2. Scientific content

1. Context and objective

Prediction of duodenal Total C18:1 and C18:1-isomers flows (g/kgDMI)

Dependent variables (Y)		Coefficient (B) of independent variables (X)						
Duodenal C18:1 isomers	Intercept	Total C18:1 intake	Total C18:2 intake	Total C18:3 Intake	N_{exp}	N _{trt}	RMSE	R ²
Total C18:1	-0,755 <mark>NS</mark>	0,310*	0,266 *	0,251*	117	295	2,387	83,47
Total cis C18:1	0,070 ^{NS}	0,256 [*]	0,079*	-	75	202	1,12	89,88
cis-9 C18:1	-0,188 ^{NS}	0,265*	0,074**	-	44	124	1,10	92,30
cis-12 C18:1	-0,066*	-	0,018*	0,004*	27	73	0,04	93,20
Total trans C18:1	-1,201***	0,065**	0,252 [*]	0,194 *	49	141	1,54	83,27
trans-10 C18:1	-	-	-	-	-	-	-	-
trans-11 C18:1	0,287 ^{NS}	0,036***	0,069**	0,082*	27	82	0,82	83,8

DMI = dry matter intake; Nexp = number of trials included; Ntrt = number of treatments; RMSE = root mean square error of the model; NS : not significant; * p-value<0,001; ** p-value<0,005; *** p-value<0,05.

- **cis9-C18:1** = + **C18:1** (P<0,001) and **C18:2** (P<0,005)
- trans11-C18:1 = + C18:1 (P<0.05), C18:2 (P<0.005) and C18:3 (P<0.001)
- trans10-C18:1 = not affected by FA intake

No interfering factors selected had a signicant effect on any of these relationships

Conclusions and Perspectives

Prediction of duodenal flows of new C18-isomers

- The different parameters (dietary and digestive) chosen don't affect significantly these predictive relations
- Improve the prediction of a wide range of FA flows at duodenum or/and absorbed :
 - ✓ C18:1, C18:2 and C18:3 isomers
 - ✓ Odd and branched fatty acids were not predicted previously

A better prediction of duodenal FA flows necessary to improve the prediction of milk FA profile

Thank you for your attention!

"all models are wrong, but some are useful."

George Box